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Physical optics scattering calculations performed on the DSN 34-m beam-

waveguide antennas at Ka-band (32 GHz) require approximately 12 hr of central
processing unit time on a Cray _LMP2 computer. This is excessive in terms of

resource utilization and turnaround time. Typically, the calculations involve five

surfaces, and the calculations are done two surfaces at a time. The sampling the-
orem is used to reduce the number of current values that must be calculated over

the second surface by performing a physical optics integration over the first surface.

The additional number of current values required on the second surface by sub-

sequent physical optics integrations is obtained by interpolation over the original
current values. Time improvements on the order of a factor of 2 to 4 were obtained

for typical scattering pairs.

I. Introduction

The technique discussed here was developed to reduce

the amount of time required by physical optics to con>

pute the antenna patterns of tile a4-m beam-waveguide
antennas at the DSN. Figure 1 illustrates a typical DSN

beam-waveguide (BWG) antenna. As can be seen, the an-

tenna has eight scattering surfaces. Beginning with the

feed system in the pedestal room, there is a fiat mirror, an
ellipse, a second fiat mirror, two parabolas, a third fiat mir-

ror, the subreflector and the main reflector. However, the

fiat mirrors are assumed not to affect the antenna pattern

properties and are ignored in the analysis, leaving five scat-

tering surfaces. With this number of mirrors, the analy-
sis must be repeated four times before the final far fields

are evaluated. For analysis up to X-band (8.45 Gtlz),
the available computers could ea.sily handle cMculations

of such size and complexity. However, with the shift to

Ka-band (a2 GHz) to support future deep-space missions,

computational times are increased by a factor of about 16.

Computational times of 12 hr on a Cray Y-MP2 single
processor computer are typical.

This article presents a method to reduce the overall

time by a factor of 4 or more for a typical pair of scatter-
ing surfaces and by a factor of 2 for the overall antenna

system. The sampling theorem coupled with a near-field

radial interpolation Mgorithm is used to speed up the phys-
ical optics calculations.

The sampling theorem has been used previously for the

far-field analysis of reflecting surfaces [1]. A sampling-like
technique [2] that allows the use of the Fast Fourier Trans-

form (FFT) algorithm has been used to calculate the far
fields of a parabolic reflector and the Fresnel zone fields of

a planar aperture. Both methods [1] and [2] were extended

to the near field [3,4J, but were limited to calculating the
fields on a spherical surface of constant radius.
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Appendix C

Measurement Equations for the M6 Mirror

I. DSS-13 Pointing Derotation Algorithm

The geometry of the DSS-13 beam-waveguide antenna

is shown in Fig. 1. During normal tracking operations, the

mirror is held fixed in the pedestal room while the antenna

moves independently relative to the mirror. Therefore,

while tracking, fixed rotations of the mirror will not result
in fixed beam-scan offsets relative to the antenna aperture.

A derotation algorithm has been developed by Cramer 1
and validated at DSS 13 utilizing the array feed system.

The algorithm predicts the relationship between a beam
offset in the antenna aperture coordinate system and its

associated phase center location in the feed position in the

antenna pedestal room as a function of the antenna main
reflector surface azinmth and elevation angles. The general

derotation algorithm is

II. Beam-Scan Measurement Equations

The Ka-band beam-scan predicts for small angles of

rotation of the M6 mirror are given in Fig. 1. The predicts

are validated by boresighting [2] the DSS-13 antenna on
natural noise sources while the mirror is offset from the

nominal optical alignment position. Let the beam-scan

angle in Fig. 1 be denoted as ®. It is related to the antenna
aperture beam coordinates by the following expression:

(_2 = Axel 2 + At/2 ((7.-4)

From the derotation algorithm above, this implies

o = _B (c-5)

._X.el = - RB cos (¢) (c-_)

Ael = RB sin (¢) (C-2)

¢=AZ-EL-r+w (c-3)

where Axel and &el define a beam offset in the antenna

aperture coordinate system, the radial distance R and an-

gle _ define the phase center (in the pedestal room) as-
sociated with the offset beam given by Axel and Ael, B

is the beam deviation factor, AZ and EL are the antenna

azimuth and elevation angles, and r defines the angular po-
sition of the of the center of the focal plane in the pedestal

room measured clockwise from true north.

During the tracking experiment, errors in cross-elevation
and elevation are measured and then logged with the mir-

ror tilt angle and the antenna position angles. Equa-

tion (C-4) is then used to estimate the magnitude of the
beam scan. Dora Eqs. (C-l) and (C-2), estimates of the

measured beam-scan angle can also be computed by

Axel
e - - (c-6)

cos (¢)

and

Ael
e - (C-7)

sin ('¢)

where ¢ is given by Eq. (C-3) and is dependent on antenna
orientation.

1p. Cramer, "Tests of the Pointing Derotation Algorithm for
DSS 13," JPL Interoffice Memorandum 3328-93-0037 (internal doc-
ument), .let Propulsion Laboratory, Pasadena, California, June 25,
1993.
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Evaluating a BWG system requires multiple near-field
calculations on arbitrary surfaces. To overcome the exist-

ing limitations, the sampling technique has been general-

ized for arbitrary, field point calculations in the near field.

Also, since evaluations on multiple surfaces are required,

a technique is outlined for developing an equivalent source

aperture that defines the geometry required to calculate

tile optimum sampling parameters.

II. Method

The basic method used to analyze the 34-m antennas

consisted of performing a physical optics integration over
the currents on the various surfaces of the antenna. The

form of the physical optics program used here [5] is based

upon a discrete approximation of the radiation integral. In

this approach, the reflector surface is replaced by a trian-

gular facet representation such that the surface resembles a

geodesic dome. The physical optics currents are assunled

to be constant in amplitude and phase over each of the

facets so the radiation integral is reduced to a simple sum-
mation of the contributions of each facet.

To evaluate the complete antenna, an integration is per-

formed over the currents on the first scattering surface to

get the currents on the second surface. Using these new

currents on the second surface, the process is repeated for

the next surface, continuing the utilization of pairs of sur-

faces until the complete antenna has been analyzed. The

final integration over the main reflector uses the Jacobi-

Bessel form of physical optics [6], which is nmch faster
for calculating far-field patterns from large reflectors, but

unfortunately not amenable to the use of the sampling
theorem. With the exception of the main reflector, if each

surface is considered to be of comparable size, and if the

required current resolution in any direction is 3/, then 3/2

physical optics integrations are required over the first sur-

face for each of the required 3/2 current points on the

second scattering surface. This implies 3/4 calculations

and is the real driver for the computational time.

Assuming first that the number of surface current val-

ues that must be calculated using physical optics on the

second surface can be reduced significantly, and second

that the 3/2 current values needed to perform the snbse-

quent physical optics integration can be obtained by in-

terpolating over the reduced surface current set, then the
computational time will approach that of y2 operations

on the first surface. The physical optics integral is com-
posed of two basic parts, the current term and the kernel

or exponential term. The current term is typically a slowly

varying function of position, while the kernel varies rapidly

as a function of position and observation point. The ap-

proach is to employ the sampling theorem to calculate the

number of surface current values necessary to define the

surface currents on the second surface, and then to use

an interpolation algorithm to obtain the larger number of

points required by the rapidly varying, but easily evalu-
ated kernel.

A key problem is to define a field sampling function that

could be used to determine the sampling frequency. Pat-
terns produced by a uniform distribution have the narrow-

est bealnwidths. Any deviations from a uniform distribu-

tion broadens the pattern shape or beamwidth. Therefore,

the pattern derived from a uniform aperture distribution

should have the highest frequency content and should pro-

vide a conservative estimator for the maximum sampling
frequency. Figure 2 illustrates the far-field pattern distri-

bution that results from a uniformly illuminated square

aperture and is defined by the following function in the u
direction:

sin (u)
E(_)-

(_)

where

27rX,, sin 0
/2-

X,,_ = center to edge dimension of a square source

aperture in the x direction

0 = angle to a field point on the sampling surface

)_ = wavelength

If this distribution is evaluated on the sampling surface,

then the distance from the surface center to its edge in

(u, v) space is

27rXm Sill 0 m

'_im --
A

where 0,¢ = angle to the edge of the sampling surface.
E(v) in the orthogonal direction can be defined in a similar
manner.

The distribution frequency is

It m
[3"=--

_.td
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where ua = 2rr is the distribution period.

Since the sampling theorem requires sampling at twice

the highest frequency and includes sampling points over
the full width of the sampling surface, the number of sam-

pling points required is

N = 2(2B) + 1

or

4X,_ sin 0m
N- +1

A

The sin (u)/(u) function is based on a far-field deriva-

tion. Although it does not provide a rigorous basis for

estimating the sampling frequency for sampling surfaces
in the near field, it still gives a good estimate for typical

source aperture fields. Also, the fields on the sampling sur-
face are not a strictly band-limited function. To account

for these limitations, an 18-percent oversampling was used,

an approach that provides sufficient accuracy (as will be

shown later).

Sinc functions are used to do the interpolations and

to evaluate the fields at any point on a sampling surface;

thus,

H(u) =
N/_. sin (u - nr)

r_=-N/2

Since the sin (u)/(u) field function is defined on a spher-
ical surface, tile sampling must also be done on a spherical

surface. Also, the spherical surface origin must be located

at the center of the source aperture. In addition, the origin

of the spherical surface must also be at the field flmction

phase center so as to minimize the phase variations over

the spherical surface. This implies that the field function

phase center must also coincide with the source aperture

origin. In general there are three problems: First., the
reflector surfaces usually are not spherical; second, even

if the reflector surface were spherical, its origin may not

be located at the origin of the source aperture; third, the
center of the source aperture may not be the phase center

of the scattered fields. To accommodate nonspherical sur-

faces or spherical surfaces with offset, phase centers, the

sampling surface of interest is enclosed by two spherical

surfaces, with the origins of the two surfaces at the phase

center of the scattered fields. Figure 3 illustrates the ge-

ometry. In the figure are five surfaces: In addition to the

physical source aperture (subreflector), and the ultimate

sampling surface (main reflector), there are the two sur-

faces enclosing the ultimate sampling surface and an equiv-

alent source aperture. If the scattered field phase center

does not coincide with the center of the physical source

aperture, an equivalent source aperture is constructed at

the phase center.

To determine where the phase center should lie, a sub-

set of the scattered field phase pattern is calculated on

a spherical surface constructed midway between the two

initial spherical reflectors, which have their origins at the

center of the physical source aperture. A phase center lo-

cation is computed that minimizes the phase pattern vari-

ations, in a least-squares sense, over the spherical surface.
A discussion of this technique is beyond the scope of this

article; however, W. Rusch and P. Potter [7] describe a

two-dimensional technique that is the basis of the three-

dimensional technique used here. The controlling equa-

tions are summarized here (see Fig. 4), where R is the

radius of the spherical reflector. The objective is to mini-

mize the following fimction:

= Ewi (kd cos 7i + c - (I)i -- -_)2

with minimization conditions:

(_IT

-0
_Xd

-- =0

6yd

_0"

-- =0

_Z d

where

wi = phase weight

k = propagation constant

d = (Xd, Yd, Zd) computed vector determining phase
center location

7i = direction to field phase point

c = residual phase of pattern relative to computed

phase center location
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4)i= phasepatternon sphericalsurfacerelativeto
originalpatternorigin

A = meanofkd cos 7i q- e -- _i

The phase center algorithm is based on a far-field ap-

proximation, i.e., the adjustment to the phase center loca-
tion must be small compared to the size and radius of the

spherical surface on which the phase is evaluated. This

limitation is overcome by iterating the algorithm until the

last estimate of the required adjustment to the phase cen-

ter position is smaller than some specified value.

The equivalent aperture size is estimated to produce a

field distribution on the sampling surface similar to that

produced by the physical source aperture. Referring to

Fig. 3, the equivalent aperture size is

Xm - Sf X_ sin 0r
sin 0,,_

where

oc] = oversampling parameter

Xm = center-to-edge dimension of the equivalent
source aperture in the x direction

Xe = center-to-edge dimension of the physical source

aperture (subreflector)

0,_ = angle to the edge of the sampling surface for the

equivalent source aperture

0_ = angle to the edge of the sampling surface for the
physical source aperture

Since a square aperture is used, Y;n = Xm. This size is

used in the calculation of the number of required sample
points N.

After the determination of the sampling parameters

and geometry and before any interpolations can be per-

formed, the fields H_ must be computed on a square grid

over the two spherical surfaces, the size of the grids be-
ing determined by the number of sampling points N. Ttle

overall interpolation is performed as follows. A radius from

the center of the equivalent source aperture (phase center)
is constructed to an interpolation point on the ultimate

sampling surface of interest and then made to intercept
tile two spherical surfaces. Polar interpolated fields are

computed on the two spherical surfaces at the intersection

points of the radius. The polar interpolation at each of

the spherical surfaces is expressed as follows:

N./2 N_/2

ff(....) -- E E ., .....,
n_=-N_/2 n,=-Nv/2

X
sin(u - n,,rr) sin(v - n,,-r)

(,, - ,,u,_) (v- nv,_)

where

_TrxX m

27ryL.
U--

x = x coordinate of point on surface of interest

y = y coordinate of point on surface of interest.

r = radial distance to point on surface of interest

H(u,v) is evaluated at rl and r2 on the two surfaces

and the results are defined as H1 and H2, respectively.

Next, a radial interpolation is performed between these

two points to obtain the interpolated field point on the

sampling surface of interest. Since a near-field interpola-

tion is required, terms of the order 1/r and 1/r 2 are used.

The appropriate equations are as follows:

H - 47rr Ao +

where

471"

Ao
(rl - r2) '_ 'u"H'e-Jk_' - r_H2e-Jk,-_)2 ,

I

4rrrlr2 (v 1HI c-jkrl __ r2H2e-jkr_)
ml- (7._,---rl)

This process is repeated until all the fields at all of

the required points on the sampling surface have been cal-

culated, then the associated currents that are required for
the subsequent physical optics calculations can be calcu-
lated.
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III. Program Design

This section briefly describes the changes required to

an existing physical optics program to implement the sam-

pling capability. The existing program is referred to as a

POPO program in that it contains a cascaded design that
allows the calculation of the scattered pattern from a two-

reflector system. In effect, the currents on the first surface
are either calculated from a feed pattern or imported from

a previous scattering calculation. Then a physical optics

integration is performed over the first surface to obtain
the currents on a second surface. At this point, two op-

tions are available: Output the currents from the second

surface to a file so that they might be imported into a sec-

ond scattering calculation and/or perform a physical optics

integration over the second surface to obtain the output
scattered fields for the dual-reflector system. Figures 5(a)

and 5(b) illustrate the program design. Figure 5(b) shows

the lower level program routines for completeness and will
not be discussed further.

Figure 5(a) shows three major blocks as follows: (1)

the sampling surface (main reflector) routines, (2) the

source aperture (subreflector) routines, and (3) the mod-

ules required to implement the sampling capability. The
subreflector routines represent the first surface and are

used to perform a physical optics integration on the first

surface for points requested from the main reflector rou-

tines, which represent the second surface. The main re-
flector routines are then used to perform a physical op-

tics integration over the second surface and to calculate
the final scattered patterns. In Fig. 5(a), a dotted line

labeled "original interconnection" shows the program in
its unmodified form. To implement the sampling theorem

mode, the only changes required to the original program

were (1) break the link between routines INFLDM and
SUBFLD and then insert the block of sampling routines,

(2) change INFLDM to call sampling routine SMPFLD in-
stead of SUBFLD, (3) change the main reflector routine

DATAIN to read in the data parameters that the sampling

routines require, and (4) change the main reflector routine

DATAO 1 to print out the data parameters associated with

the sampling routines. Only simple changes to three rou-

tines were required. These routines are enclosed by dotted
boxes.

Figure 6 shows a sample input data file for the POPO

scattering program. The parameters in the box are the
only changes required to the data file to support the sam-

pling capability. The parameter SFACT allows chang-

ing the oversampling parameter from the default value of

18 percent to some other value. TFACT allows extend-

ing the sampling surface beyond its physical boundaries.

XD,YD, and ZD specify the estimated location of the pat-

tern phase center. SUBSW indicates whether the phase
center location is defined in main reflector coordinates or

subreflector coordinates. PHASW indicates whether the

program is to compute an optimum phase center.

This discussion shows the simplicity of the approach

and the ease with which it can be integrated into dual-

surface physical optics scattering programs.

IV. Results

Figures 7 and 8 show the accuracy of the sampling

approach. In the center of each figure, the geometry of
the test case is illustrated to include a pair of parabolic

mirrors such as used on a typical 34-m beam-waveguide

antenna. The first parabola is the source aperture. The

second parabola is the sampling surface on which a re-
duced set of fields are calculated and then interpolated to

obtain the total set of fields and hence the currents re-

quired by physical optics to calculate the scattered field

from the sampling surface. Figure 7 shows two curves de-

scribing the fields calculated on the sampling surface, one
curve for the fields calculated in the normal manner and a

second curve for the case where interpolation is used with

a sparse set of sample points. There is a small amount

of ripple between the two curves, less than 0.5 dB, but as

seen in the Fig. 8, it has a negligible effect on the far fields
calculated from the currents associated with the fields on

the sampling surface. The curves shown in Fig. 8 are for
the far fields calculated by performing a physical optics in-

tegration over the currents on the second parabola (sam-

pling surface). One curve uses currents calculated using

the sampling theorem and the other curve is based on the
normal method where the currents are computed using

physical optics integration for all the current points. As
can be seen, the two curves are essentially identical over

40 dB. The differences are primarily in the side-lobe re-

gion. However, the side-lobe regions do not illuminate the
subsequent scattering surfaces and therefore are of no in-

terest in this particular application.

Figure 9 shows a combination of an elliptical source

aperture and a parabolic sampling surface. Again, this is

typical of a set of mirrors used in a beam-waveguide an-
tenna. This case is different from the previous example

in that the location of the phase center was known in the

previous case, while in this case it was not. The source of
the fields for the ellipse was from a feed with a transverse

offset of approximately 8 wavelengths from the nominal

focus, making it difficult to predict where the phase center
would be for fields scattered from the ellipse. The program
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was allowed to compute the location of the phase center

starting with an estimated phase center that would be ap-

propriate for a feed at the focus of the ellipse. The phase
center had to be shifted by approximately 16 wavelengths.

Except for one glitch, there is good agreement over 35 dB.

The glitch represents a 1.5-dB error at a point 20 dB be-

low the pattern peak. Some of the error could possibly be

attributed to the difficulty of reproducing a pattern that
contained some aberrations due to an offset feed.

An investigation was made to determine the effect of

the size of the oversampling parameter on the accuracy of

the computed scattered patterns. Figure 10 illustrates the

effect of the oversampling parameter for a combination of

an ellipse and a parabola. The upper 28 dB of the pattern

was truncated to give more resolution to the area most

affected by the oversampling parameter. As can be seen,
a value of 1.18 is sufficient for a dynamic range of 37 dB

(28 + 9). Except for the error at the 37-dB relative level,
a value of 1.6 followed the main lobe down to at least the

58-dB relative level. As can be seen, larger oversampling

values did not help in the side-lobe region. For most ap-

plications, performance below 30 dB is not required and
the default value of 1.18 should be adequate. It is rec-

ommended that convergence tests be run for each general

application or class to determine if the default value is

adequate, or if a value of the oversampling parameter
smaller than the default is desired. It must be pointed

out that the computation time is strongly influenced by

the size of the oversampling parameter.

The effect of increasing the sampling surface beyond

the limits of the actual surface was investigated to see if

this would improve the sampling accuracy, especially by

better modeling the fields at the edge of the sampling
surface. Figure 11 illustrates the case for an ellipse and

parabola combination. A factor TFACT was defined and

i_sa ratio of the angle subtended by a extended sampling

surface to the angle subtended by the actual sampling sur-
face. Thus TFACT = 1.0 refers to a sampling surface with

no change. Except for some slight changes in the side-lobe

region, it was found that increasing the sampling surface

size had very little effect on pattern accuracy. This pa-

rameter did not show much potential and was not pursued

further. Since increasing the sampling surface size strongly

affects the computation time, a value of 1.0 should be used.

Figure 12 is a summary of the time improvement that
was obtained for a calculation on a 34-m beam-waveguide

antenna at Ka-band. Included in Fig. 12 is a schematic di-

agram of the 34-m BWG antenna with the three flat mir-

rors removed, which is the geometry analyzed and summa-

rized in the figure. The appearance of the ellipse in front
of the main reflector has no physical significance, but is

what happens when the flat mirrors are removed. The re-

sults are shown by mirror pairs, the first mirror being the
source mirror and the second mirror being the sampling

mirror. The difference in time between the first two cases

is easily accounted for. The sampling frequency is based
on the size of the source aperture and the subtended angle

produced by the sampling surface relative to the source

aperture. In the second case the two mirrors are closer

together than in the first case, increasing the subtended

angle and in turn requiring a higher sampling frequency.

See the equation for calculation of N. The improvements

ranged between 1.69 and 4.39. The overall improvement
up to and including the subreflector is a factor of 2.73.

The sampling theorem was not applied to the main re-

flector calculation, so an improvement factor of 1.0 was

assigned. Including the main reflector, a net improvement

of 2.05 was obtained, reducing the computation time from
11.55 hr to 5.64 hr.
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SANPLE DATA FILE

FREQ UNITS

32.0 mETERS

XS YS ZS

-142.894190 O.0 -217.50

ALPHAS BETAS GAMMAS

90.0 120.0 90.0

SCALER

1.

MFILE

dummy.dat

NDXM NDYM XSYMM

270 270 T

IFLAGM SIZER

-I 1.0

READJE SAVEJE

f t

XF YF ZF

0.0OOO0 1.75000 0.3710

ALPHAF BETAF GAMMAF

0.0 0.0 0.O

YSYMM

F

SCALES SFACT T FACT XD YD ZD

I. O.0 0.O O.O 0.O 9.0
SFILE

dummy, dat

NOXS NDYS XSYMS YSYMS

340 340 T F

IFLAGS SIZES

-1 1.0

CIRPOL POLX LHCP

T F T

GAIN

0.0

HFILE

f3-22-32, spw

RR

380.0

PHIl PHIF DPHI

0.0 90.1 90.0

THETAI THETAF DTHETA

-16.0 16.1 0.5

THTBP0 PHIBPD

90. O.

PHSXC PHSYC PHSZC

0.0 0.0 260.0

PATNRM

GAIN

POLARZ

SPHERICAL

HFIELD FRSNEL ROTATE

F F T

PRT PAT PLTPAT PLTPHS WR IT 27

F F F T

HFMAGN ( I ) HFMAGN ( 2 ) HFMAGN ( 3 )

I. I. I.
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Fig. 6. Sample input data sheet; added sampling data requirements shown in box.
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Fig. 7. The Hy field on the surface of the second parabola.
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F- SHAPED-SURFACE

3S4H_PED_SURFACE / SUBREFLECTOR

REFLECTOR 7 .......... ___,_....._ .... F ELLIPSE

PARABOLA --_ "_- PARABOLA

INTEGRATION POINTS POINTS TIME TIME
PER AXIS PER SAMPLING. NORMAL, TIME

GEOMETRY lst/2nd SURFACE WAVELENGTH min min RATIO

ELLIPSE/PARABOLA 340/270 1/1 64.43 283.00 4.39

PARABOLA/PARABOLA 270/270 1/1 107.54 181.32 1.69

PA RABOLA/SUBR EFLECTOR 270/200 1/0.5 32.88 94.72 2.88

SUBTOTAL 204.85 559.04 2.73
(3.41 hr) (9.32 hr)

SUBREFLECTOR/MAIN 200/24 0.5/.° 133.82 133.82 1.00

TOTAL 338.67 692.86 2.05
(5.64 hr) (11.55 hr)

Fig. 12. Schematic and analysis summary, 34-m BWG antenna,
Ka-band.


